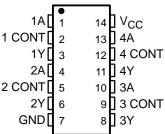
- Meets or Exceeds the Requirements of ANSI EIA/TIA-232-E and ITU Recommendation V.28
- Low Supply Current . . . 420 μA Typ
- Preset On-Chip Input Noise Filter
- Built-in Input Hysteresis
- Response and Threshold Control Inputs
- Push-Pull Outputs
- Functionally Interchangeable and Pin Compatible With Texas Instruments SN75189/SN75189A, Motorola MC1489/MC1489A, and National Semiconductor DS14C88A

description

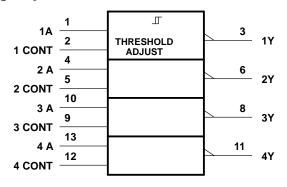
The SN65C189, SN65C189A, SN75C189, and SN75C189A are low-power bipolar quadruple line receivers that are used to interface data terminal equipment (DTE) with data circuit-terminating equipment (DCE). These devices have been designed to conform with ANSI Standard EIA/TIA-232-E.

The SN65C189 and SN75C189 have a 0.33 V typical hysteresis compared with 0.97 V for the SN65C189A and SN75C189A. Each receiver has provision for adjustment of the overall input threshold levels. This is achieved by choosing external series resistors and voltages to provide bias levels for the response control pins. The output is in the high logic state if the input is left open circuited or shorted to ground.

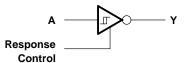

These devices have an on-chip filter that rejects

input pulses of shorter than 1-µs minimum duration. An external capacitor may be connected from the control pins to ground to provide further input noise filtering for each receiver.

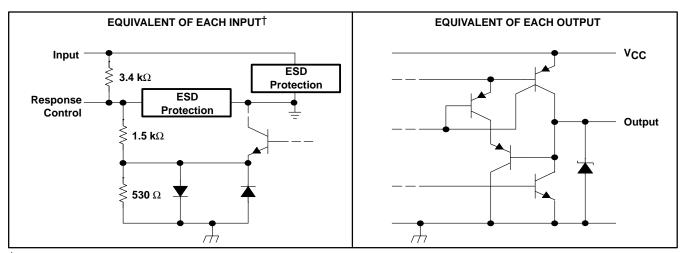
The SN65C189, SN75C189, SN65C189A, and SN75C189A have been designed using low-power techniques in a bipolar technology. In most applications, these receivers will interface to single inputs of peripheral devices such as UARTs, ACEs, or microprocessors. By using sampling, such peripheral devices are usually insensitive to the transition times of the input signals. If this is not the case or for other uses, it is recommended that the SN65C189, SN75C189, SN65C189A, and SN75C189A outputs be buffered by single Schmitt input gates or single gates of the HCMOS, ALS, or 74F logic families.


The SN65C189 and SN65C189A are characterized for operation from -40° C to 85°C. The SN75C189 and SN75C189A are characterized for operation from 0°C to 70°C.

D, DB[†], N, OR NS[†] PACKAGE (TOP VIEW)


† The DB and NS packages are only available left-end taped and reeled, i.e., order SN75C189ADBLE or SN75C189ANSLE.

logic symbol‡


[‡] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (each receiver)

SLLS041D - OCTOBER 1988 - REVISED MAY 1995

schematic of inputs and outputs

[†] All resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage range, V _I	
Output voltage range, VO	\dots -0.3 V to V _{CC} + 0.3 V
Continuous total dissipation	See Dissipation Rating Table
Operating free-air temperature range, TA: SN65C189, SN65C189	9A40°C to 85°C
SN75C189, SN75C189	0A 0°C to 70°C
Storage temperature range, T _{stq}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds .	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltages are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A = 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	494 mW
DB	525 mW	4.2 mW/°C	336 mW	273 mW
N	1150 mW	9.2 mW/°C	736 mW	598 mW
NS	500 mW	4.0 mW/°C	320 mW	260 mW

SLLS041D - OCTOBER 1988 - REVISED MAY 1995

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	6	V
Input voltage, V _I (see Note 2)				25	V
High-level output current, IOH				-3.2	mA
Low-level output current, IOL				3.2	mA
Response control current				±1	mA
Operating free-air temperature, TA	SN65C189, SN65C189A	-40		85	°C
	SN75C189, SN75C189A	0		70	<u> </u>

NOTE 2: The algebraic convention, where the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only, e.g., if –10 V is a maximum, the typical value is a more negative voltage.

electrical characteristics over recommended free-air temperature range, V_{CC} = 5 V $\pm 10\%$ (unless otherwise noted) (see Note 3)

PARAMETER			TEST CON	MIN	TYP†	MAX	UNIT	
\/	Positive-going input threshold voltage	'C189	See Figure 1		1		1.5	V
VIT+	Fositive-going input threshold voltage	'C189A	See Figure 1	See Figure 1			2.25	V
\/	Negative-going input threshold voltage	'C189			0.75		1.25	V
VIT-	Negative-going input tilleshold voltage	'C189A	See Figure 1		0.75	1	1.25	
٧,	V _{hvs} Input hysteresis voltage (V _{IT+} – V _{IT} –)		0.15	0.33		V		
V _{hys}	input hysteresis voltage (v + - v _)	'C189A	See Figure 1		0.65	0.97		V
VOH High-level output voltage		$V_{CC} = 4.5 \text{ V to 6 V},$ $I_{OH} = -20 \mu\text{A}$	V _I = 0.75 V,	3.5			V	
	nigii-level output voltage		$V_{CC} = 4.5 \text{ V to 6 V},$ $I_{OH} = -3.2 \text{ mA}$	V _I = 0.75 V,	2.5			V
VOL	Low-level output voltage		$V_{CC} = 4.5 \text{ V to 6 V},$ $I_{OL} = 3.2 \text{ mA}$	V _I = 3 V,			0.4	٧
i	High-level input current		See Figure 2		3.6		8.3	mA
lн	riigh-level input current	input current		V _I = 3 V	0.43		1	
ı	In a land land in a state of the state of th		See Figure 2	$V_{I} = -25 \text{ V}$	-3.6		-8.3	mA
IIL.	Low-level input current		$V_{\parallel} = -3 \text{ V}$		-0.43		-1	111/4
IOS	Short-circuit output current		See Figure 3				-35	mA
ICC	Supply current		V _I = 5 V, See Figure 2	No load,		420	700	μΑ

[†] All typical values are at $T_A = 25$ °C.

NOTE 3: All characteristics are measured with response control terminal open.

switching characteristics, V_{CC} = 5 V $\pm 10\%$, T_A = 25°C

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low- to high-level output						6	μs
tPHL	Propagation delay time, high- to low-level output						6	μs
tTLH	Transition time, low- to high-level output [‡]	$R_L = 5 k\Omega$,	$C_L = 50 pF$,	See Figure 4			500	ns
tTHL	Transition time, high- to low-level output [‡]]					300	ns
t _{w(N)}	Duration of longest pulse rejected as noise§				1		6	μs

[‡] Measured between 10% and 90% points of output waveform.

[§] The receiver ignores any positive- or negative-going pulse that is less than the minimum value of $t_{W(N)}$ and accepts any positive- or negative-going pulse greater than the maximum of $t_{W(N)}$.

PARAMETER MEASUREMENT INFORMATION[†]

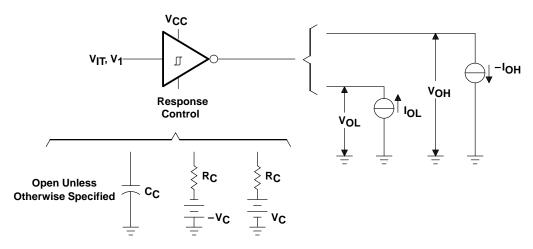


Figure 1. V_{T+} , V_{IT-} , V_{OH} , V_{OL}

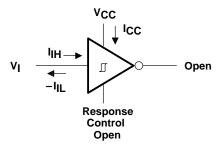


Figure 2. I_{IH} , I_{IL} , I_{CC}

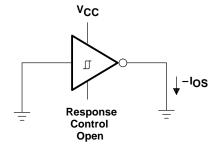
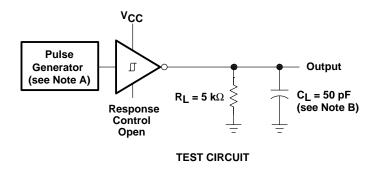
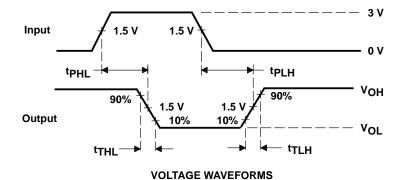




Figure 3. IoS

[†] Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: Z $_{O}$ = 50 $\Omega,\,t_{W}$ = 25 $\mu s.$

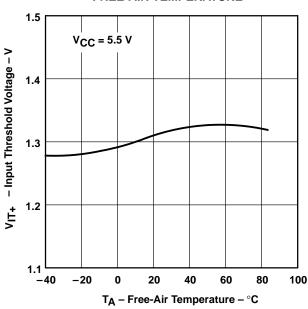
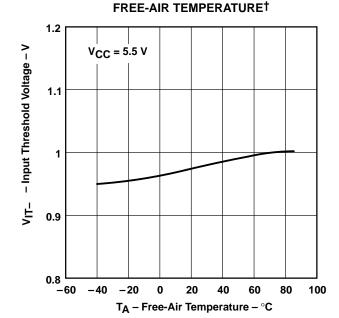

B. C_L includes probe and jig capacitances.

Figure 4. Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS


SN75C189 INPUT THRESHOLD VOLTAGE (POSITIVE-GOING)

SN75C189 **INPUT THRESHOLD VOLTAGE (NEGATIVE-GOING)**

Figure 5

[†] Only the 0°C to 70°C portion of the curves applies to the SN75'.

Figure 7

SN75C189A INPUT THRESHOLD VOLTAGE (POSITIVE-GOING)

FREE-AIR TEMPERATURE[†]

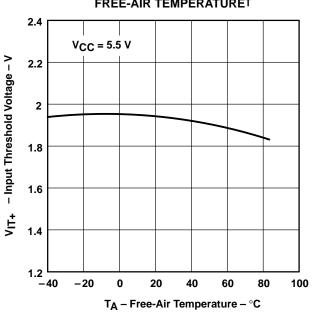


Figure 6

SN75C189A **INPUT THRESHOLD VOLTAGE (NEGATIVE-GOING)**

FREE-AIR TEMPERATURE[†]

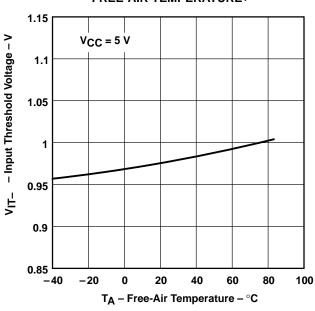
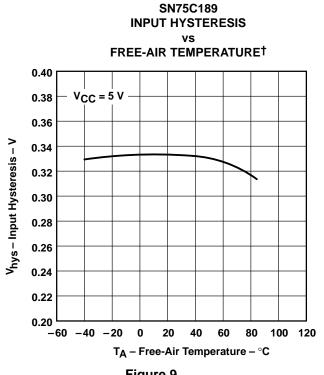


Figure 8

SN75C189A


INPUT HYSTERESIS

TYPICAL CHARACTERISTICS

0.4

-40

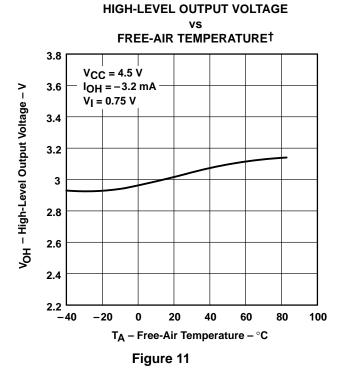
-20

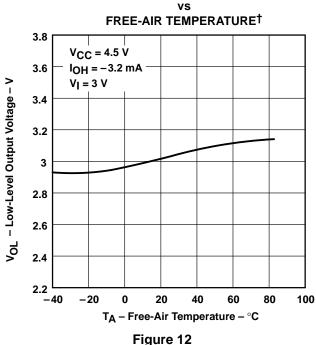
FREE-AIR TEMPERATURE† 1.2 $V_{CC} = 5 V$ 1.1 1 Vhys - Input Hysteresis - V 0.9 0.8 0.7 0.6 0.5

Figure 9

T_A - Free-Air Temperature - °C

20

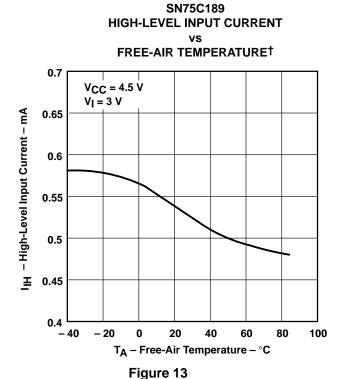

Figure 10

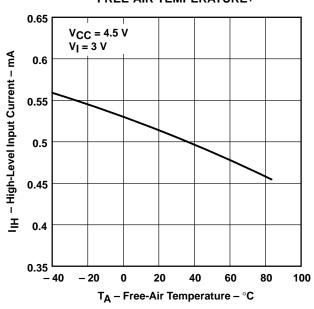

40

60

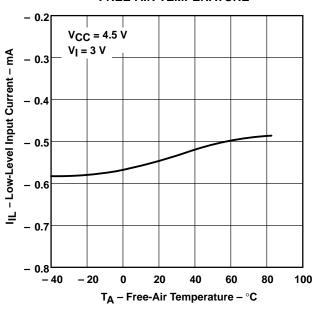
100

80

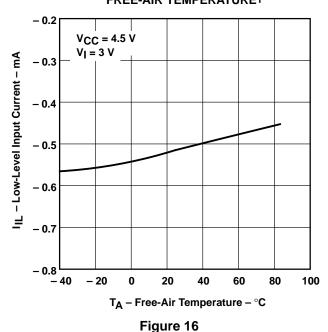



† Only the 0°C to 70°C portion of the curves applies to the SN75'.

TYPICAL CHARACTERISTICS



SN75C189A HIGH-LEVEL INPUT CURRENT VS FREE-AIR TEMPERATURE†


SN75C189 LOW-LEVEL INPUT CURRENT

FREE-AIR TEMPERATURE†

SN75C189A LOW-LEVEL INPUT CURRENT vs FREE-AIR TEMPERATURE†

Figure 14

 † Only the 0°C to 70°C portion of the curves applies to the SN75'.

Figure 15

LOW-LEVEL SHORT-CIRCUT OUTPUT CURRENT

TYPICAL CHARACTERISTICS

HIGH-LEVEL SHORT-CIRCUT OUTPUT CURRENT FREE-AIR TEMPERATURE† OS(H) - High-Level Short-Circuit Output Current - mA 0 $V_{CC} = 5.5 V$ -2 $V_O = 0$ -4 -6 -8 -10 -12 -14 -16 **-** 40 - 20 20 40 60 80 100

Figure 17

T_A – Free-Air Temperature – °C

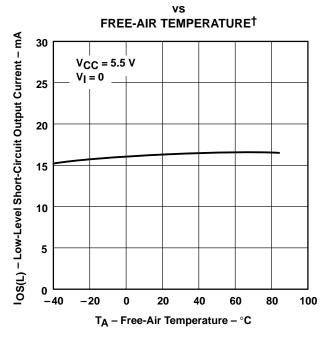
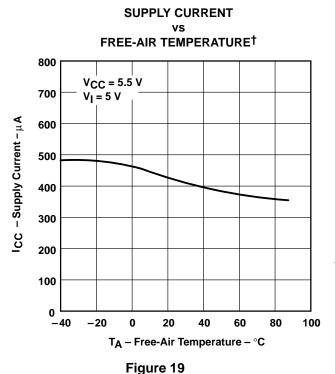
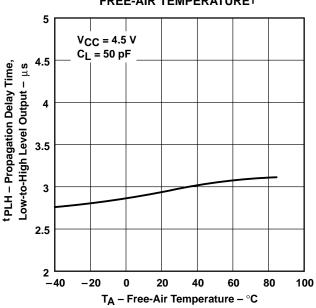
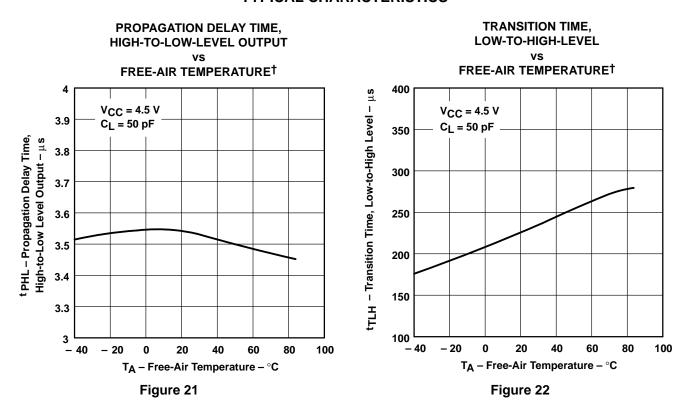
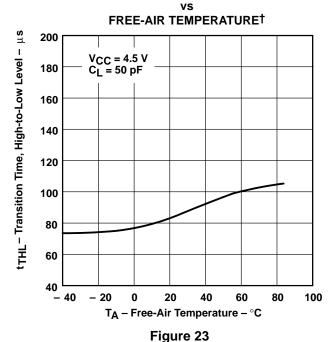



Figure 18

†Only the 0°C to 70°C portion of the curves applies to the SN75'.

PROPAGATION DELAY TIME, LOW-TO-HIGH LEVEL OUTPUT vs FREE-AIR TEMPERATURE


Figure 20

TYPICAL CHARACTERISTICS

TRANSITION TIME, HIGH-TO-LOW-LEVEL OUTPUT

[†] Only the 0°C to 70°C portion of the curves applies to the SN75'.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated