
- Bi-MOS Technology With TTL and CMOS Compatibility
- Meets or Exceeds the Requirements of ANSI EIA/TIA-232-E and ITU Recommendation V.28
- Very Low Quiescent Current . . . 95 μA Typ
 V_{CC±} = ±12 V
- Current-Limited Outputs . . . 10 mA Typ
- CMOS-and TTL-Compatible Inputs
- On-Chip Slew Rate Limited to 30 V/μs max
- Flexible Supply Voltage Range
- Characterized at V_{CC±} of ±4.5 V and ±15 V
- Functionally Interchangeable With Texas Instruments SN75188, Motorola MC1488, and National Semiconductor DS14C88

description

The SN65C188 and SN75C188 are monolithic, low-power, quadruple line drivers that interface data terminal equipment with data communications equipment. These devices are designed to conform to ANSI Standard EIA/TIA-232-E.

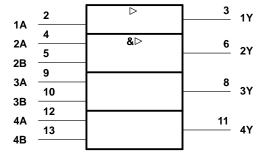
D, DB[†], OR N PACKAGE (TOP VIEW)

† The DB package is only available left-end taped and reeled, i.e., order device SN75C188DBLE.

Function Tables

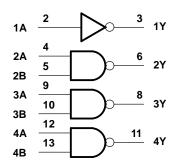
B Y H L L H

Α	В	Υ
Н	Η	L
L	Χ	Н
Χ	L	Н

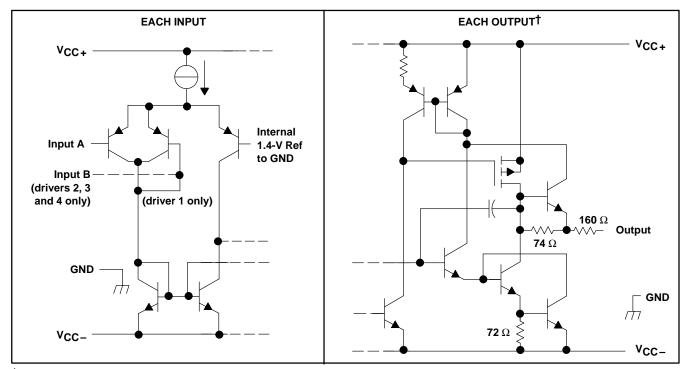

DRIVERS 2 THRU 4

H = high level, L = low level, X = don't care

An external diode in series with each supply-voltage terminal is needed to protect the SN65C188 and SN75C188 under certain fault conditions to comply with EIA/TIA-232-E.


The SN65C188 is characterized for operation from -40° C to 85° C. The SN75C188 is characterized for operation from 0° C to 70° C.

logic symbol‡


[‡]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

positive logic $Y = \overline{A}$ (driver 1) $Y = \overline{AB}$ or $\overline{A} + \overline{B}$ (drivers 2 through 4) SLLS033E - JANUARY 1988 - REVISED MAY 1995

schematics of inputs and outputs

[†] All resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC+} (see Note 1)	15 V
Supply voltage, V _{CC} (see Note 1)	–15 V
Input voltage range, V _I	V _{CC} to V _{CC+}
Output voltage range, V _O	V_{CC-} -6 V to V_{CC+} +6 V
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A : SN65C188	–40°C to 85°C
SN75C188	0°C to 70°C
Storage temperature range, T _{stq}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	494 mW
DB	525 mW	4.2 mW/°C	336 mW	273 mW
N	1150 mW	9.2 mW/°C	736 mW	598 mW

NOTE 1: All voltage values are with respect to the network ground terminal.

SLLS033E - JANUARY 1988 - REVISED MAY 1995

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC+}		4.5	12	15	V
Supply voltage, V _{CC} -		-4.5	-12	-15	V
Input voltage, V _I		V _{CC} -+2		VCC+	V
High-level Input voltage, VIH		2			V
Low-level Input voltage, V _{IL}				0.8	V
Operating free-air temperature, TA	SN65C188	-40		85	•°C
	SN75C188	0		70	

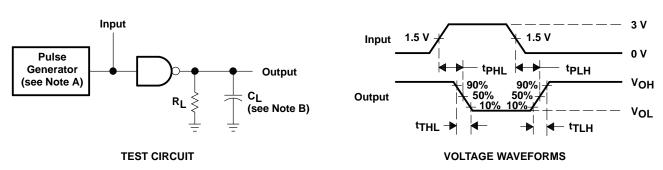
electrical characteristics over operating free-air temperature range, V_{CC+} = 12 V, V_{CC-} = -12 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP†	MAX	UNIT
Vou	High-level output voltage	V _{IL} = 0.8 V,	$R_L = 3 \text{ k}\Omega$	V _{CC+} = 5 V, V _{CC-} = -5 V	4			· v
VOH				V _{CC+} = 12 V, V _{CC-} = -12 V	10			
V _{OL}	Low-level output voltage (see Note 2)	V _{IH} = 2 V,	$R_L = 3 \text{ k}\Omega$	V _{CC+} = 5 V, V _{CC-} = -5 V			-4	. v
VOL		VIH - Z V,		V _{CC+} = 12 V, V _{CC-} = -12 V			-10	
lн	High-level input current	V _I = 5 V					10	μΑ
I _I L	Low-level input current	V _I = 0					-10	μΑ
IOS(H)	High-level short-circuit output current‡	V _I = 0.8 V,	$V_O = 0$ or V_{CC}		-5.5	-10	-19.5	mA
IOS(L)	Low-level short-circuit output current [‡]	V _I = 2 V,	= 2 V, V _O = 0 or V _{CC+}		5.5	10	19.5	mA
rO	Output resistance, power off	$V_{CC+} = 0,$	$V_{CC-} = 0$,	$V_{I} = -2 \text{ V to } 2 \text{ V}$	300			Ω
laa	Supply ourrent from Vo.a	V _{CC+} = 5 V, No load	V _{CC} -=-5 V,	All inputs at 2 V or 0.8 V		90	160	^
ICC+	Supply current from V _{CC+}	V _{CC+} = 12 V, No load	$V_{CC-} = -12 \text{ V},$	All inputs at 2 V or 0.8 V		95	160	μΑ
loo	Supply current from V _{CC} -	V _{CC+} = 5 V, No load	V _{CC} -=-5 V,	All inputs at 2 V or 0.8 V		-90	-160	
Icc-		V _{CC+} = 12 V, No load	V _{CC} -=-12 V,	All inputs at 2 V or 0.8 V		-95	-160	μΑ

[†] All typical values are at $T_A = 25$ °C.

NOTE 2: The algebraic convention, in which the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only; e.g., if -4 V is a maximum, the typical value is a more negative voltage.

[‡] Not more than one output should be shorted at a time.


SLLS033E - JANUARY 1988 - REVISED MAY 1995

switching characteristics, $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -12 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low- to high-level output [†]	$R_L = 3 k\Omega$,	C _L = 15 pF,			3	μs
^t PHL	Propagation delay time, high- to low-level output [†]	See Figure 1				3.5	μs
tTLH	Transition time, low- to high-level output [‡]			0.53		3.2	μs
tTHL	Transition time, high- to low-level output [‡]			0.53		3.2	μs
tTLH	Transition time, low- to high-level output§	$R_L = 3 k\Omega$ to $7 k\Omega$,	C _L = 2500 pF,		1.5		μs
tTHL	Transition time, high- to low-level output§	See Figure 1			1.5	·	μs
SR	Output slew rate§	$R_L = 3 k\Omega$ to $7 k\Omega$,	C _L = 15 pF	6	15	30	V/μs

[†] Measured at the 50% level

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $t_W = 25 \ \mu s$, PRR = 20 kHZ, $Z_O = 50 \ \Omega$, $t_T = t_f \le 50 \ ns$.

B. C_L includes probe and jig capacitance.

Figure 1. Test Circuit and Voltage Waveforms

[‡] Measured between the 10% and 90% points on the output waveform

[§] Measured between the 3 V and -3 V points on the output waveform (EIA/TIA-232-E conditions), all unused inputs tied either high or low

OUTPUT CURRENT

TYPICAL CHARACTERISTICS

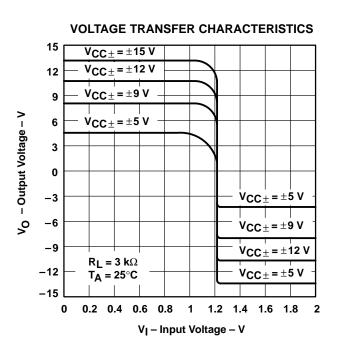
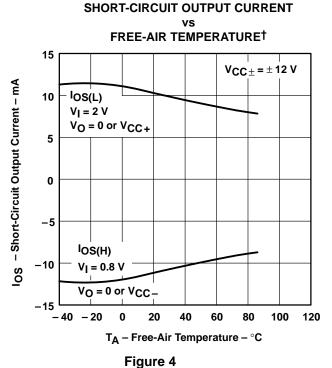
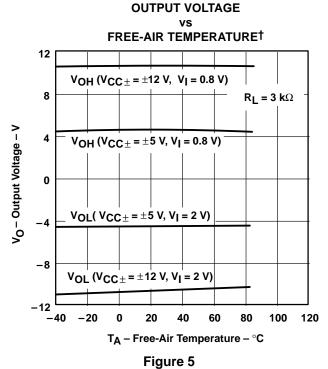




Figure 2

OUTPUT VOLTAGE 20 $V_{CC\pm} = \pm 12 V$ 16 $T_A = 25^{\circ}C$ 12 $V_{OL} = (V_I = 2 V)$ IO - Output Current - mA 8 4 3-kΩ Load Line 0 -4 $V_{OH} (V_{I} = 0.8 V)$ -8 -12 -16 -20 _16 -12 12 16 VO - Output Voltage - V

Figure 3

[†] Only the 0°C to 70°C portion of the curves applies to the SN75C188.

TYPICAL CHARACTERISTICS

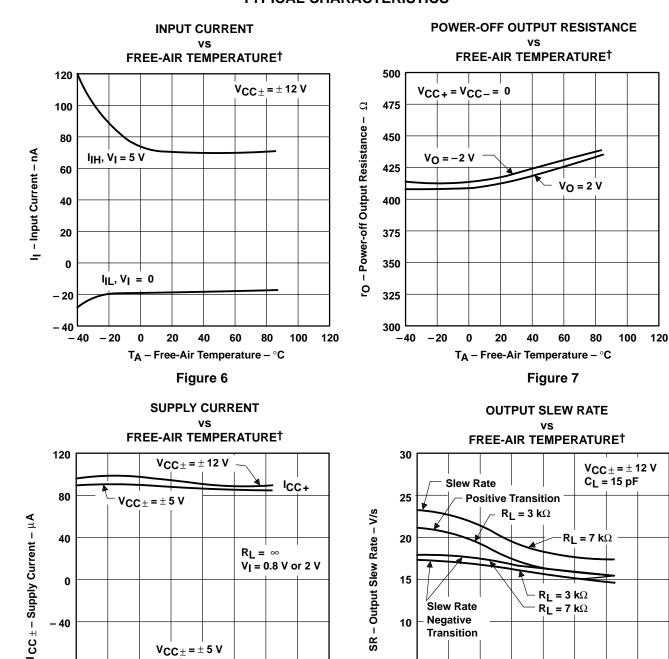


Figure 8

60

 $V_{CC\pm} = \pm 12 V$

40

T_A - Free-Air Temperature - °C

ICC-

100

120

20

40

T_A - Free-Air Temperature - °C

60

80

100

120

 $R_L = 7 k\Omega$

Slew Rate

Transition

Negative

10

5

0

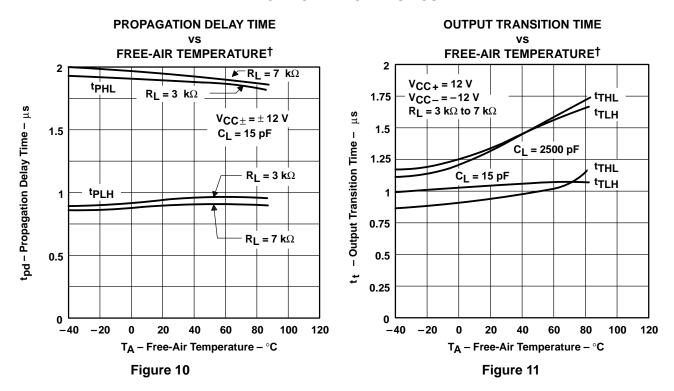
-40 -20

20

 $V_{CC\pm} = \pm 5 V$

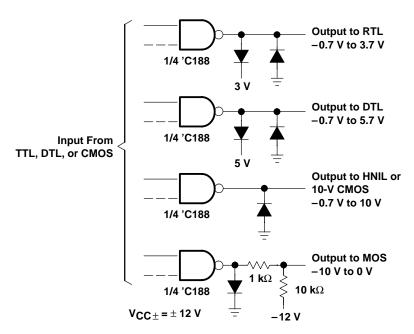
– 40

-80


-120

-40

-20


[†] Only the 0°C to 70°C portion of the curves applies to the SN75C188.

TYPICAL CHARACTERISTICS

[†] Only the 0°C to 70°C portion of the curves applies to the SN75C188.

APPLICATION INFORMATION

Figure 12. Logic Translator Applications

APPLICATION INFORMATION

NOTE A: External diodes placed in series with the V_{CC+} and V_{CC-} leads will protect the SN75C188 in the fault condition where the device outputs are shorted to ± 15 V and the power supplies are at low voltage and provide low-impedance paths to GND.

Figure 13. Power Supply Protection to Meet Power-Off Fault Conditions of Standard EIA/TIA-232-E

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated